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ABSTRACT 
A very general  method is described for multiple linear regression of a quantitative phenotype on 

genotype [putative quantitative trait loci (QTLs) and markers] in segregating generations obtained from 
line crosses. The method exploits two features, (a) the use  of additional parental and F, data, which  fixes 
thejoint QTL  effects and the environmental error,  and  (b) the use  of markers as cofactors, which reduces 
the genetic background noise. As a result, a significant increase of QTL detection power is achieved  in 
comparison with conventional QTL mapping. The core of the method is the completion of any  missing 
genotypic (QTL and marker) observations, which is embedded  in  a general and simple expectation 
maximization (EM) algorithm to obtain maximum likelihood estimates of the model parameters. The 
method is described in detail for the analysis  of an F2 generation. Because  of the generality of the  approach, 
it is  easily applicable to other generations, such as  backcross progenies and recombinant  inbred lines. An 
example is presented  in which multiple QTLs for plant  height in tomato are  mapped in an F2 progeny, 
using additional data from the  parents and their F, progeny. 

S INCE the  pioneering  papers of  WELLER (1986), 
LANDER and BOTSTEIN (1989) and PATERSON et al. 

(1988), the  detection and genetic mapping of quanti- 
tative trait loci (QTLs) by using molecular markers is 
gaining growing attention from biometrical geneticists. 
A variety  of genetic models and estimation procedures 
for QTL mapping has been  proposed, some focusing on 
specific breeding designs. A widely applied QTL map- 
ping  method is “conventional” interval mapping, first 
described by LANDER  and BOTSTEIN (1989) and suc- 
cessfully applied in a number of case studies (e.g., 
PATERSON et al. 1988, 1991; STUBER et al. 1992). Ad- 
dressing the issues of the power of detecting QTLs and 
the precision of QTL mapping  in F,’s and backcross 
progenies  obtained  from  line crosses, VAN OOIJEN 
(1992) showed that,  generally  speaking,  efficient 
“conventional”  interval  mapping  requires  population 
sizes which are beyond the sizes commonly used in this 
type of experiment. 

In interval mapping, QTLs are usually mapped one at 
a time, ignoring  the effects  of other  (mapped  or  not yet 
mapped) QTLs. It is  now generally recognized that si- 
multaneous  mapping of multiple QTLs  is more efficient 
and  more  accurate (cJ KNAPP 1991; HALEY and KNOTT 

1992). In  the ideal case  all genotypic variation in for 
example an F, is explained by putative QTLs, i .e . ,  the 
residual variation after fitting QTLs should be approxi- 
mately equal to the phenotypic variation observed in the 
isogenic parents and F,. Also the observed difference 
between the  parents and that between each of the par- 
ents  and  the F, should ideally be  explained by the joint 
QTL effects. 
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In this study we present  an  approach to QTL detection 
and  mapping which combines two important  features 
for power improvement: (a)  the use  of markers as  co- 
factors (as a working substitute for simultaneous map- 
ping of multiple QTLs) and  (b) the use  of parental and 
F, data (which fixes the  joint QTL effects and  the  en- 
vironmental error). Both features  tend to decompose 
more powerfully the phenotypic variation into genetic 
and environmental variation and thus improve the ac- 
curacy  of  QTL mapping. We present an example on 
plant  height in tomato which demonstrates  that with this 
method  the ideal situation sketched above can even be 
reached with a  data set of moderate size. 

WELLER (1986), LANDER and BOTSTEIN (1989) and 
other authors have  shown that  a quantitative trait derives 
from a mixture of (normal) distributions, so that statis- 
tical methods for maximum likelihood estimation in fi- 
nite (normal) mixture models can be applied. Recently 
it has been  demonstrated  that  the finite mixture model 
can be  embedded easily  in the framework of multiple 
linear regression models, and even  in that of generalized 
linear models (JANSEN 1992, 1993a). 

Estimating the effects  of  QTLs and also mapping of 
QTLs by using molecular markers can be considered as 
a multiple regression problem with  missing genotypic 
data.  The basic idea of our unified approach  to this prob- 
lem is the completion of  any  missing genotypic data. The 
formulation of multiple linear regression models or gen- 
eralized linear models (GLMs) for  the  completed  data 
is straightforward. Parameter estimation is carried out by 
iterative weighted regression. The details will be worked 
out in this report for an F2 progeny. 
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The phenotype can be regressed on a single QTL, on 
two or more QTLs simultaneously, on markers and so 
on.  Here we follow the  method described by JANSEN 

(1993b), which is essentially a computationally feasible 
alternative to simultaneous mapping of multiple QTLs. 
In this method  the phenotype is regressed on a single 
putative QTL in a given marker interval and  at  the same 
time on a  number of markers that serve  as cofactors. The 
rationale behind using markers as cofactors is that these 
will eliminate the major part of the variation induced by 
QTLs located elsewhere on the  genome, thus reducing 
the genetic background variation. 

MULTIPLE LINEAR REGRESSION OF PHENOTYF'E 
ON GENOTYPE IN AN F, 

Segregation analysis for quantitative traits and QTL 
mapping can be viewed  as problems in which the  data 
are incomplete: the observations of the genotypes at  the 
quantitative trait loci are missing. Complete data models 
and  incomplete  data models for  an F, progeny are  de- 
scribed in the  next two sections. 

Genotype known: We  will adopt  the following no- 
tation  for the genotypes at a  diallelic locus: A and B 
denote homozygous (parental) genotypes and H de- 
notes  the  heterozygote.  Let  us assume that  the  geno- 
type at all loci affecting  a  quantitative  trait is known. 
Then, assuming absence of epistatic effects, the re- 
gression model  reads 

Y = m + xaia, + xdid, + E (1) 
1 t 

where Y is the  phenotypic  trait, m is the  mean, a, and 
d, are  the  additive and  dominance effects of individual 
loci and E is the  environmental  error;  the  summation 
is over loci affecting the trait. The xai and xdi are in- 
dicator variables for  the  genotype; xai takes the value 
-1, 0 and + 1 for the genotypes A, H and B, respec- 
tively; xdi takes values 0, 1 and 0 for A,  H a n d  B, re- 
spectively. E is generally  assumed  to be normally dis- 
tributed. 

The genotypes at QTLs are, of course, not known. 
However, marker loci may take  over the  role of  QTLs. 
In fact, the loci in the regression model may be  either 
a set of markers, a single QTL, multiple QTLs or any 
combination of markers and QTLs. To be able to regress 
on  the unknown QTL genotypes, one can complete the 
missing QTL genotypic data. This is elaborated in the 
next section. 

Missing genotypic  observations: All genotypic data 
at QTLs can  be viewed  as missing. In practice it also 
occurs  frequently  that  the  observation of a  molecular 
marker  genotype fails for a number of plants,  for  in- 
stance due to  faint  bands on  the  autoradiogram.  It is 
quite  common  that (up  to) 5% of the  marker  data  are 
missing. Apart  from  these  fortuitously missing data, 
another type of missing marker  data may occur in a 
natural way, namely when  markers  are dominant  and 

the  heterozygote cannot  be distinguished  from one of 
the homozygotes. Plants with any missing marker  data 
might  be  eliminated  from  the  regression,  but in mul- 
tiple  linear  regression of the  trait on many markers 
only a very limited  set of data would then  remain. 
A general  solution  to  the  problem of missing geno- 
typic data is to  complete  them in the way described 
below. 

The basis  of completing missing genotypic observa- 
tions is to assign  weights to  the possible genotypic states 
at  a locus for which the observation fails. These weights 
are  conditional probabilities of the genotypic states 
given the observed phenotype  and  the observed geno- 
types at  other  (linked) loci. In this way both  pheno- 
typic and genetic  linkage  information is used to com- 
plete  the missing genotypic  observation. Having 
completed  the  data,  estimates of the regression pa- 
rameters  are  obtained by weighted regression of phe- 
notype on  the  completed  genotype.  Repeated  updat- 
ing of weights, based on  the  current  parameter 
estimates, followed by parameter estimation are  the 
basic steps of an iterative  expectation maximization 
(EM) algorithm  to  obtain  maximum  likelihood esti- 
mates. 

The completion of missing genotypic observations 
not only applies to  a putative QTL, but also to any  miss- 
ing marker genotype. Since both putative QTLs and 
markers are factors (in statistical sense), they are dealt 
with in exactly the same way.  We  will  now describe in 
detail how phenotypic information is used; next  the use 
of genetic linkage information is dealt with, and finally 
the simultaneous use of phenotypic and linkage infor- 
mation are discussed. 

The  phenotype can be used to complete missing  ge- 
notypic data in the following way. Suppose, for  the 
moment,  that it is  known that genotypes A, B and H at 
a specific locus have different mean phenotypic values, 
genotype A having the largest mean phenotype. An 
observed large phenotypic value y then indicates that 
the missing observation is most  likely to be A.  This 
could be expressed by assigning  weights of, for in- 
stance, 0.6 to A ,  0.3 to H and 0.1 to B. The basic idea 
of an iterative EM algorithm described by JANSEN 

(1992, 1993a) consists of the  replacement of the single 
incomplete observation y by its three complete obser- 
vations ( y, A ) ,  ( y, B )  and ( y, H ) ,  and weighting the 
three complete observations by specified or updated 
(conditional) probabilities. The conditional probabil- 
ity P(A I y) that the missing  observation  has  constitution 
A equals P(Aly)  = P(A) . J y I A ) / J y ) ,  where f l y )  = 
P ( A )  - J I y l A )  + P(B) *JyIB) + P(H)  . f ( y lH ) ,  
P(A) = P(B)  = i, P(H)  = 2 and f(yIA), Jyl B )  and 
f (  y I H) are the probability  density functions of  observa- 
tions with genotypes A, B and H, respectively.  Similar  ex- 
pressions hold for P(BI y) and P(HI y). Generally,  pa- 
rameter values are unknown and their maximum 
likelihood  estimates can be obtained iteratively by the 
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following alternating steps: 
Step 1: Specify or update weights. 
Step 2: Update  the estimates of the regression param- 

eters by a weighted regression of phenotypes on the 
completed genotype. 

The weights  in step 1 are calculated by using the cur- 
rent parameter estimates. When the environmental er- 
ror is assumed to be normally distributed,  the  updates 
in step  2  are 

p = (X’WX)-1XTWy, 

62 = ( l / N ) ( Y  - Xp)”nfY  - x&, 
where Y is the  complete  data vector, X is the design 
matrix for  the  complete  data, W is the diagonal matrix 
of weights, p is the vector of regression parameters  for 
the  normal  mean, uz is the  normal variance and  Nis  the 
number of individuals. The algorithm is conveniently 
started by setting  the  parameters to (well chosen) initial 
values. The same procedure can be used to estimate the 
parameters of a multiple linear regression of the trait on 
two or  more loci. The data of a single plant  are repli- 
cated three times for any  missing genotypic observation 
(-) and completed with the  three possible outcomes A, 
B and H, the  three possibilities being properlyweighted. 
Similarly,  all data of a  plant  are replicated twice for in- 
complete observations “non-A” or “non-B” which occur 
in the case  of dominance, and completed with B and H, 
and A and H,  respectively. 

Flanking loci can also be informative to complete 
missing genotypic data. For instance, suppose that  for 
two adjacent loci the score is A-, which means that  the 
observation on  the second locus is missing. The obser- 
vation on the  neighbor locus indicates that  the missing 
observation most likely will also be A. The single incom- 
plete observation is replaced by its three  complete o b  
servations AA, AB and AH. The conditional probability 
P(AA I A-) that  the missing observation has constitution 
A equals P(AA I A-) = (1 - r)’, where r is the recom- 
bination frequency between the two loci. The  other two 
conditional probabilities are P(ABI A-) = rz and 
P(AH I A-) = 2r( 1 - r )  . Similarly, conditional probabili- 
ties are calculated for  the genotypes B and H when the 
missing observation is scored as  non-A, or for  the  geno- 
types A and H when it is scored as non-B. These con- 
ditional probabilities can be calculated directlywhen the 
value  of r is known. In practice the genetic linkage map 
of the markers is often fixed and a putative QTL  is 
moved along  the  genetic  map, so that  for  a given map 
position of the QTL all recombination  frequencies  are 
fixed. If r must be estimated from the same data  an it- 
erative procedure may be followed  with the above step 
1 and a new step 2: 

Step 2: Update  the estimate of the recombination 
frequency based on the weights. 

The APPENDIX describes how to update  the estimates of 
recombination  frequencies  for  an F2. The Same proce- 

dure also applies to scores for multiple loci such as 
HHH, A-H, H- -H or A- -B. 

The information  contained in the phenotypic values 
and in the  marker  map can also be used simultaneously 
to calculate conditional probabilities given the observed 
marker  data and given the phenotypic values: the above 
procedures can be combined  and this leads to our QTL 
mapping  method. Given the  current  parameter esti- 
mates the  conditional probability in step 1 is updated as 
follows 

where P( gl h )  is the  conditional probability for  the 
complete genotype g given the  incomplete genotype h, 
f( y I g) is the probability density function of the 
trait y given the  complete genotype g, and f( y I h )  = 
&P( g I h )  f( y I g) is the mixture of probability density 
functions of the trait y given the  incomplete genotype h. 
In  step 2 the regression parameters  are  updated and so 
are  the  recombination  frequencies if the  map is not 
fixed. This  method is a modification of the  approach 
proposed by JANSEN (1992). The  method described here 
allows more efficient computer programming. A com- 
puter  program has been written in Genstat (Genstat 5 
Committee 1987), exploiting weighting options  for 
(generalized)  linear models. 

The completed  data  are used for  the weighted regres- 
sion of phenotype on genotype and residuals may be 
calculated in the usual way. A measure for  the discrep- 
ancy between the  data and their fitted values can be 
obtained by calculating the weighted sum of the  squared 
residuals 

A’ = 2 P(gl y, h> . ( y  - my, (3) 

where mg is the mean of genotype g. For observations 
obtained  from one of the  parents or from the F, prog- 
eny, the weighted sum of squared residuals is in fact a 
squared residual. For non-mixture data  the  squared re- 
sidual follows approximately a chi-squared distribution 
with one degree of freedom, multiplied by the residual 
variance. No standard theory is currently available on 
the distributional properties of the weighted sum of 
squared residuals in the case  of mixture models; as an 
ad hoc approximation we used the chi-squared distri- 
bution with one degree of freedom, multiplied by the 
residual variance. 

Generalizations: In our  approach  outlined above, 
phenotypic  data of the  parental lines and their F, 
progeny  can  be  included  without any further modi- 
fication. The genotypes at  the  marker loci are com- 
pletely known; no data  completion is required. By 
definition then, all markers and putative QTLs have 
genotype A for  one  parent,  Bfor  the  other  parent,  and 
H for  the F,. 

g 
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Other generations, such as doubled haploids, back- 
cross progenies and Fs’s, can  be  dealt with in  a similar 
way to  the F,. In a backcross progeny, for example, an 
incomplete observation ( y )  is replaced by  two weighted 
complete observations y ( A )  and y(  H )  [or y (  H )  and 
y ( B )  , depending on the direction of the backcross], 
When using information from linked markers in  a back- 
cross, the weighting rules must be  adapted accordingly. 
Recombinant inbred lines (RILs) can also be  dealt with 
easily, the modification being that only  homozygotes 
can occur; and again the weighting rules must be 
adapted accordingly when using linkage information. 

When the  experimental  setup involves  fixed  effects, 
like  block  effects or replicates, these are accommodated 
for straightforwardly by adding  corresponding terms in 
the regression model. 

The above procedure applies not only to multiple lin- 
ear regression models, assuming a  normal  error distri- 
bution, but also to generalized linear models (GLM). 
Generalized linear models can be used to describe the 
dependence of phenotype on genotype for  grouped 
normal, y, binomial, multinomial, Poisson, ordinal  data, 
and so on (MCCULLAGH and NELDER 1989). This is of 
particular importance since the distribution of  many  ag- 
ronomic traits in crop species, for which QTL mapping 
is relevant, is  of one of the above listed types. The same 
procedure also applies to variance component models 
that  are  often used for QTL mapping in animals. 

Model selection: We choose the genetic models that 
maximize the value of the log-likelihood (3) minus a 
penalty for the  number of free parameters ( k )  in the 
model. Equivalently,  Akaike’s information criterion, 
AIC = - 2 ( S  - k )  may be minimized. The  number of 
parameters  should not be  too  large, preferably less than 
2vnumber of observations (SAKAMOTO et  al. 1986). 

In many experiments designed to detect associations 
between marker genotypes and quantitative charac- 
ters, the  number of segregating molecular markers 
maybe  fairly large. Since in an F, each marker  that is 
used as a cofactor corresponds to two parameters, 
the  number of parameters may readily exceed 
22/ number of observations. To avoid this situation we 
have used the following procedure to select only the 
most influential markers as cofactors. Linkage group by 
linkage group,  the AICs for several models are calcu- 
lated and subsets of markers are selected. First, the phe- 
notype of the F, progeny is regressed on the markers of 
only the first linkage group,  and  the  corresponding AIC 
is calculated. Some of these markers may be  dropped 
from the model to reduce  the AIC; the subset of markers 
with the smallest AIC is retained. Next, the  phenotype 
of the F, progeny is regressed on the markers of only the 
second linkage group,  and  the  corresponding AIC  is cal- 
culated. Some of these markers may be  dropped to re- 
duce  the AIC  of the second linkage group,  and so on. 
In  the end the selected markers of  all linkage groups  are 
amalgamated and a new,  overall AIC value is calculated 

TABLE 1 

Outline of the models fitted 

Selected markers used on 
no/other/all chromosomes 

QTL fitted No Other All 

Yes C A? A, 
No D B? B, 

Models C and D are compared in “conventional” interval mapping. 
Models A,,  A,, B,  and B, make use of additional marker  cofactors to 
reduce genotypic variation induced by QTLs located elsewhere on 
the genome. 

for  the regression of the  phenotype of the F, progeny on 
all selected markers. 

In  the process of interval mapping,  a single putative 
QTL is  moved along  the genetic marker map  and  at each 
position the deviance (twice the log likelihood ratio) or 
the LOD score (deviance divided by 2 ln(10) = 4.6) 
between the model with and that without the assumed 
QTL is calculated and plotted along the marker map. 
Table 1 lists the models for which it makes sense to cal- 
culate (maximum) likelihoods [same notation asJANSEN 
(199313) 1. For the example data we  have calculated the 
deviances between models A, (with QTL) and B, (with- 
out QTL) of Table 1; in both cases the selected markers 
on the  other chromosomes were used as cofactors. We 
also calculated the deviances between models A, (with 
QTL and all selected markers) and B, (without QTL, 
with selected markers on  other chromosomes only), 
which expresses the  joint effect of a putative QTL and 
the selected markers on the same chromosome; the re- 
sulting deviance curve will be (approximately) a level 
line if there is a single QTL the effect of  which  is ab- 
sorbed by selected flanking markers. If there is an ad- 
ditional QTL on  the same chromosome,  the deviance 
curve may  show a peak at  the position of that second 
QTL, and so on [see JANSEN (1993b) for more details]. 
For the sake  of comparison we also calculated and plot- 
ted the deviance between models C and D,  which cor- 
responds  to “conventional” interval mapping. 

The use of  AIC provides a decision strategy for model 
selection and enables us to compare nested and un- 
nested hypotheses. One should consider all models 
which  have approximately equal AICs (2. e . ,  models with 
an AIC difference less than 2 or some other chosen 
threshold). Regular methods can be used for testing of 
nested hypotheses. Tests for the presence of a QTL 
(model C us. model D, or model A, us. model B,) can 
be based on the deviance, but its (asymptotic) distribu- 
tion is not exactly  known. As a  rule of thumb, we use the 
chi-squared distribution with 3 degrees of freedom  (d.f.) 
(1 d.f. for  the recombination parameter,  one for the 
additivity parameter of the QTL and  one for the domi- 
nance  parameter of the QTL) . Each additional marker 
in the model takes two extra d.f. It takes 4 d.f. to test 
for  the simultaneous effect of  two markers in multiple 
regression on markers; it takes 5 d.f. to test model A, us. 
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TABLE 2 

Mapping QTIs for plant  height:  some  population  parametea 
for L. esculentum, L. pennellii, the hybrid F, and the Fp 

No. of Mean  Phenotypic 
Population plants phenotype variance 

L. esculentum 18 4.009 0.0199 
L. pennellii 20 3.885 0.0219 
F, 1 1  4.049 0.0877 
F* 82 a 4.022 0.1483 

Plant height (cm) has been log-transformed. 
RFLP data  for 84 plants,  plant height data  for 82 plants. 

model B, for  the simultaneous effect of a single QTL and 
one marker, and so on. Many  tests are  performed when 
moving along  the genetic map. An overall significance 
level cannot  be  guaranteed  due to the  current lack  of 
knowledge about  the statistical behavior of the  (inter- 
dependent) tests.  Using a significance level  of 0.001 per 
test, the overall significance level  in conventional inter- 
val mapping would be between 1 % and 5% for  a  genome 
of 12 chromosomes covered with 50 markers (KNom 
and HALEY 1992). We use the same significance level per 
test (0.001) in the practical example on tomato plants 
described in the  next section, but  an overall significance 
level for our mapping  approach  cannot be guaranteed. 
The chi-squared threshold  at  a significance level of 0.001 
per test equals 13.8 for 2 d.f.; it is 16.3,  18.5,  20.5,  22.5, 
24.3 and 26.1 for 3, 4,  5,  6,  7 and 8 d.f., respectively. By 
using a  high significance level per test the probability of 
missing  any existing QTL may become undesirably 
large. QTLs the  presence of  which cannot  be  demon- 
strated significantly may still partly explain the differ- 
ences  for phenotypic values between the  parents, F, and 
F,. Therefore, selected markers may be  retained in the 
regression even though no QTLs are indicated signifi- 
cantly in the nearby region. 

APPLICATION 

A practical example on plant  height in an F, progeny 
of tomato will be used to illustrate the  methods de- 
scribed in the previous section; additional  parental and 
F, data  and  marker cofactors are used in the interval 
mapping. The  data  are part of a larger experiment,  the 
details and results of  which  will be reported elsewhere. 

The parents were a commercial tomato cultivar (Ly- 
copersicon  esculentum) and a wild species (Lycopersicon 
Pennellii) . In  the F, 52 restriction fragment  length poly- 
morphism (RFLP) markers were scored. Plant height 
was measured six  weeks after sowing.  Mean phenotypic 
values and variances for  the  parents,  the F, and the F, 
progeny are  presented in Table 2. A log-scale was used 
as is commonly done for young plants when growth is 
nearly exponential. Four percent of the  marker  data 
were  missing. Two  of the 84 F, plants had  broken tops 
SO that  their observations of plant  height were  missing. 
Nevertheless, their  marker  data could still be used for 
mapping markers. 

The markers were assigned to linkage groups and 
mapped (and the  recombination  frequencies between 
adjacent markers were estimated) by using the com- 
puter package JoinMap (STAM 1993). The total number 
of markers is 52, so that  the total number of parameters 
in the regression of the  phenotype on all markers is 
equal to 104. This number exceeds the  number of F, 
plants (82), and is still too large for reliable model se- 
lection even when parental and F, data  are  added (49 
plants).  Therefore, we applied  the  procedure of marker 
selection described above, using the F, data.  These se- 
lected markers were subsequently used as cofactors in 
interval mapping (also some non-selected marker co- 
factors were added again during  the interval mapping 
stage; see below). Next, the phenotypes of the F, prog- 
eny, the  parents and the F, progeny were simultaneously 
regressed on a single QTL and  on selected markers. This 
putative QTL was moved along  the genetic maps of the 
various chromosomes. The results are shown in Figure 
1. The impact of a single putative QTL on a given chro- 
mosome is indicated by the deviance between models A, 
(with  QTL) and B, (without QTL); in both cases the 
selected markers on the  other chromosomes were used 
as cofactors (finely dashed  lines).  The joint effect of the 
putative QTL and selected markers on  the same chro- 
mosome is expressed by the deviance between models A ,  
(with QTL and all selected markers) and B2 (without 
QTL, with selected markers on  other chromosomes 
only) (coarsely dashed  lines). 

At least six  QTLs  were indicated, one  on each of the 
chromosomes 6, 7, 8 and 9 (in  the regions were the 
finely dashed lines in Figure 1 exceed the critical level 
of 16.3) and two QTLs on chromosome 2 (in  the regions 
close to the  marker cofactors; see below). Selected mark- 
ers on chromosomes 3, 5 and 10 were retained in the 
regression to absorb effects  of  possible  QTLs  whose  pres- 
ence could not be  demonstrated significantly, but which 
still explain a  part of the phenotypic variation. On chro- 
mosome 8 the smallest AIC value  of model A ,  is much 
less than  the smallest AIC value  of model A,  (the AIC 
difference is 41.93 - 27.96 - 2k = 5.97 > 2, where k is the 
number of free  parameters  for  the  additional two co- 
factors; see Figure 1) .  This indicates multiple QTLs on 
chromosome 8. However, the deviance difference of 
13.97 is still not significant:  it is less than  the critical 
value of 18.5. We did  present only the most apparent 
result  (estimates for a single QTL on chromosome 8), 
but we should  bear  in  mind  that  the  true  genetic back- 
ground  can be more complex  (multiple QTLs on 
chromosome 8). On chromosome 2 the  joint contri- 
bution of the two marker  cofactors  to the deviance is 
significant: the coarsely dashed  line in Figure 1 ex- 
ceeds  the  critical value of 18.5. The effect of the co- 
factors are  opposite, which indicates an extremely dif- 
ficult case to  unravel:  linked QTLs  with opposite 
effects. The finely and coarsely dashed  lines in Figure 
1 result  from  using either  none or both of the two 
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cofactors, respectively. We also fitted  model A, with 
either  the first or  the second  cofactor;  the estimates 
of the two QTLs are based on these  models. The effect 
of one QTL is estimated on  the assumption  that  the 
effect of the  other QTL is eliminated by the  marker 
cofactor. 

Table 3 presents estimates of the QTL effects. Three 
out of the six  QTLs  have large positive additive effects, 
the  other  three have large negative additive effects. Note 
that  the parents, the F, and the F, have approximately 
the same mean  height  (Table 2), so that  the effects of 
the QTLs should approximately cancel. The discrepancy 
between the  summed QTL effects and  the observed dif- 

"r CHROMOSOME 9 

ml"---7 
CHROMOSOME 10 

dl, CHROMOSOME 12 
M T I l w w l  

FIGURE 1.-Deviance  plots for plant  height  in  an F, progeny of 
tomato.  The  phenotypes of the F, progeny  were  regressed  on a 
putative  QTL,  which  was  moved  along the  genetic map  of  each 
chromosome  ("conventional"  interval  mapping).  The  deviance 
between  the  model  with  the  QTL  (model C) and  the  model 
without  the  QTL  (model D) was plotted  (solid line). The  phe- 
notypes  of the F, progeny,  the  parents  and  the F, progeny  were 
simultaneously  regressed  on a putative  QTL  and a number of 
selected  markers;  again  the  QTL was  moved along  the  genetic 
map.  The  finely  dashed  line  shows  the  plot of the  deviance  be- 
tween  model A, (with  the  QTL)  and  model B, (without  the 
QTL); in  both  cases  all  selected  markers  from other  chromo- 
somes  were  used.  The  coarsely  dashed  line  represents  the  plot 
of the  deviance  between  model A ,  (with the QTL and  all  selected 
marker  cofactors)  and  model B2 (without  the  QTL  but  with se- 
lected  markers  only on  other  chromosomes). 

ferences between the  parents  could  be  due  to  undetec- 
ted QTLs; their effects are hopefully eliminated by the 
marker cofactors. The pooled  environmental variance 
for  the original parents  and  the F, equals 0.0273 (after 
removing one F, plant; see below). Table 3 shows that 
this value  is approximated very  well by using single QTL 
models with marker cofactors on other chromosomes, 
indicating  that these models explain the total genetic 
variation satisfactorily. 

It should  be  mentioned that  the interval mapping 
stage was passed through several  times. The first time all 
preselected markers were used as cofactors (so far  chro- 
mosome 8 contained no selected markers). Then  the 
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TABLE 3 

&timates of QTL effects, residual variance and recombination  frequency  between QTL and left flanking marker 

Chromosome QTL  effects 
(and marker Recombination 

interval) Additive Dominance Variance frequency * 

2 0.255 0.026 0.0197  0.130 

2 -0.247 -0.071 0.0208 0.091 

(4-) (0.043) (0.057) (0.0050) (0.040) 

(1-2) (0.044) (0.063) (0.0043) (0.039) 
7 -0.248 -0.114  0.0236  0.111 

( 2-3) (0.050) (0.065) (0.0053) (0.041) 

6 -0.204  0.205  0.0244 0.070 

(2-3) (0.047) (0.067) (0.0043) (0.039) 
8 0.272 0.118 0.0181 0.165 

(1-2) (0.058) (0.064) (0.0028) (0.038) 
9 0.249 -0.087  0.0249  0.111 

(1-2) (0.037) (0.048) (0.0042) (0.036) 

Standard errors of the estimates are presented between  brackets. 
The QTL was  moved along the genetic map with steps of 2.5 cM; the recombination between the QTL and its left flanking marker is reported. 

deviance plot  for  chromosome 8 showed a clear peak, 
indicating a QTL between marker 1 and 2. Therefore, 
the second time two cofactors were added  on chromo- 
some 8 to eliminate the putative QTL effect. Next the 
weighted sums of squared residuals were checked for 
outliers. Figure 2 presents a histogram of the weighted 
sum of squared residuals obtained from the multiple 
linear regression of the  phenotype of the F, progeny, the 
parents and  the F, progeny on all selected markers. At 
a significance level of 0.01 the critical value equals a p  
proximately 0.24, so that one observation from the F, 
may be considered to be  an  extreme  outlier. One plant 
of the F, progeny has a weighted sum of squared re- 
siduals just exceeding  the critical value. The F2 outlier 
also caused narrow sharp peaks in the coarsely dashed 
lines close to  marker cofactors (not shown): the factor 
for a putative QTL absorbed the effect of the  outlier 
rather  than  an effect of a true QTL. The plant heights 
of these two outliers were removed, which reduced  the 
variance among F, plants from 0.0877 to 0.0512, and 
changed  the variance among F, plants from 0.1483 to 
0.1499 (see  Table 2). For the  third and final time the 
interval mapping was then passed through. After each 
successive passing of interval mapping  the peaks shown 
in Figure 1 for  chromosomes 6, 7,8 and 9 became more 
pronounced. 

To compare  the above results with conventional in- 
terval mapping,  the  phenotypes of the 82 F, plants were 
regressed on a single putative QTL, which was moved 
along  the  genetic  map. The deviance between the model 
with the single QTL (model C )  and that without the 
single QTL (model D) was plotted at each map position 
(solid line in Figure 1 ) .  A comparison of deviance curves 
for  chromosomes 6, 7, 8 and 9 demonstrates  that our 
approach is much  more powerful than conventional in- 
terval mapping. Only two  QTLs are  detected by con- 
ventional interval mapping (one QTL on chromosome 

100 - L. esculenhm 

m 1. pennellii - 4 - F, 80 

0.05 0.1 0.15 0.2 0.25 0.3 0.55 0 . 4  0.45 0.5 

FIGURE 2.-Histogram  of  the  weighted sum of squared  re- 
siduals,  used  for  the  detection of outliers  for  plant  height  in 
an  F,progeny  of  tomato.  The  residuals  were  obtained  from  the 
mulhple  linear  regression  of  the  phenotypes of the F, progeny, 
the  parents  and  the F, progeny  on  all  selected  markers. Two 
outliers are indicated, namely  the  plants  with  the  weighted 
sum of squared  residuals >0.24. 

6 and  one on chromosome 7). 

DISCUSSION 

Powerful and accurate QTL mapping can serve  several 
important goals.  First, dissecting quantitative characters 
into Mendelian factors yields a position from where the 
genetics of complex characters can be studied in terms 
of individual gene effects rather  than in the statistical 
terms (i. e., variances, covariances) of  classic quantitative 
genetics. Second,  the application of indirect selection 
via markers and  other forms of tracing individual genes 
in breeding programs, such as guided introgression, 
gains substantially from powerful QTL mapping meth- 
ods. In this study none of these ultimate goals was aimed 
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at directly; nevertheless, the example given illustrates 
the  potential  contribution of our new  analytical method 
to progress in these areas. The phenotypic variation of 
the quantitative trait was resolved into  at least six puta- 
tive  QTLs and  an environmental error  component. 
These results should still be  regarded as preliminary; 
they  have to  be confirmed by further  experiments. Fa 
lines, isogenic for regions of putative QTLs,  may be pro- 
duced and tested (PATERSON et al. 1991); also  backcross 
inbred lines may be used for this purpose (BECKMANN 
and SOLLER 1989). 

Our approach to QTL mapping uses the unified con- 
cept of completing missing genotypic data  for  both a 
putative QTL and markers. If many data  are missing, this 
may  give rise to  computational problems: in an F, one 
missing marker observation may actually  have one of 
three allelic constitutions, two missing marker observa- 
tions (for  the same plant) result in nine possible con- 
stitutions, and so on. If in a data  set with  many markers 
a certain  proportion of the  marker genotypes is missing, 
the  number of weighted completed  data may become so 
large that  computation is no longer feasible. Molecular 
geneticists, who are generally collecting the marker 
data,  should  be aware of the consequences of missing 
marker  data, so that they hopefully will strive for com- 
pleteness of their  data. However, to  complete  data  it is 
not necessary to use all  available information;  the 
amount of computation  can  be  reduced considerably by 
a limited completion of missing data: genotypes with 
negligible weights may be  disregarded, without substan- 
tial  loss of information. 

In conventional interval mapping  data from the par- 
ents  and  the F, progeny cannot  be used; if the  parental 
and F, data were included,  the results would be seriously 
biased because the single QTL would be called upon  to 
explain all the  mean differences between the  parents 
and  the F, progeny. It is only because markers are used 
as cofactors in our approach  that  data  from  parents and 
F, can be  included; QTL mapping may become much 
more powerful when marker cofactors explain a large 
proportion of the genetic variation (or  at least the  mean 
difference between the  parents  and  the F, progeny). In 
other cases, for instance when there  are  numerous QTLs 
of small effect distributed  throughout  the  genome,  the 
power  of QTL mapping may be  reduced by using pa- 
rental and F, data, because the  additional constraints on 
the  parameters  are too exacting. 

In  our example data set, an interaction between 
marker cofactors and a putative QTL is indicated (Fig- 
ure  1, chromosome 8): if the inclusion of marker CO- 

factors simply reduced  the residual variance, the solid 
and finely dashed lines should be approximately similar 
in shape,  although  the finely dashed lines might be 
higher. We speculate that in the small F, progeny of 84 
plants in our example, deviant segregation ratios for two 
or more  unlinked QTLs have  masked the effect of the 

QTL on chromosome 8 when we applied  the conven- 
tional interval mapping  method. In  our approach,  the 
effects of the QTLs involved could be unraveled by the 
use  of marker cofactors. This problem for small popu- 
lations should be explored in more  detail by simulation. 

Little is  known about  the influence of outliers on QTL 
mapping; we proposed a weighted sum of squared re- 
siduals to  indicate outliers. Two particular observations 
in the example data set were detected as potential out- 
liers. It was observed that such outliers can incorrectly 
indicate multiple linked QTLs. Also they may hamper 
efficient and accurate resolvability  of  QTLs. 

In  the example we have come across a situation which 
represents a “worst case” configuration: linked QTLs 
with opposite effects. As indicated by STAM (1991), and 
confirmed by the  present study, in such a case multiple 
regression will be  more powerful than “conventional” 
interval mapping. Our single data  set  cannot answer the 
general question as to what resolution power is attain- 
able with our method. To answer this question a number 
of  known configurations of QTLs and QTL effects, as 
well  as heritability and population size, need  to  be stud- 
ied by simulation. 

The regression  models that  are used  in our ap- 
proach assume additivity of effects over loci. Though 
epistatic effects can  in  principle  be  modeled  straight- 
forwardly as well, we have chosen not  to  do so because 
of the  rapid  increase of the  number of parameters, 
relative to the  amount of data. In  our view, however, 
the  detection of epistatic effects requires a different 
type of experimental  approach,  such as raising the F, 
offspring of deliberately  chosen F, multilocus  marker 
genotypes. 

The authors  are  greatly  indebted to P. ODINOT and W. H. LINDHOUT, 
Department  of  Vegetables  and  Fruit  Crops of CPRO-DLO,  for sup 
plying  the  data of the  example. 

LITERATURE CITED 

BECKMANN, J. S., and M. SOUR, 1989 Backcross  inbred lines  for map 
ping  and  cloning of loci of  interest, pp. 117-122 in Development 
and  Application of Molecular  Markers  to  Problems in  Plant Ge- 
netics, edited by  B. BumandT. HELENTJARIS. Brookhaven  National 
Laboratory. 

GENSTAT 5 COMMI’ITEE, 1987 Genstat 5 Reference Manual. Clarendon 
Press, Oxford. 

HALEY, C. S., and  S. A. &om, 1992 A simple  method for mapping 
quantitative  trait loci  in line crosses  using  flanking  markers. 
Heredity 6 9  315-324. 

JANSEN, R. C., 1992 A general  mixture model for  mapping  quanti- 
tative  trait loci by using  molecular  markers.  Theor.  Appl.  Genet. 

JANSEN, R. C., 1993a Maximum likelihood in a  generalized  linear fi- 
nite  mixture  model by using  the EM algorithm.  Biometrics 49: 

JANSEN, R. C., 1993b Interval  mapping of  multiple quantitative  trait 
loci. Genetics  135: 205-211. 

KNAPP, S. J., 1991 Using  molecular  markers  to  map  multiple  quan- 
titative  trait loci:  models  for  backcross,  recombinant  inbred, 
and doubled  haploid  progeny. Theor. Appl. Genet. 81: 
333-338. 

85: 252-260. 

227-231. 



High Resolution  Interval  Mapping 1455 

KNOIT, S. A., and C. S. HALEY, 1992  Aspects of maximum likelihood 
methods for  the mapping of quantitative trait loci in line crosses. 
Genet. Res. 60: 139-151. 

LANDER, E. S., and D. BOTSTEIN,  1989 Mapping Mendelian factors 
underlying quantitative traits using RFLP linkage maps. Genetics 
121: 185-199. 

MCCULLAGH, P., and J. A. NELDER, 1989 Generalized linear models, in 
Monographs on Statistics  and  Applied  Probability 37. Chapman 
& Hall, London. 

PATERSON, A. H., E. S. LANDER, J. D. HEW, S. PETERSON, S. E. LINCOLN 
et al.,  1988 Resolution of quantitative traits into Mendelian fac- 
tors by using a complete linkage map of restriction fragment poly- 
morphisms. Nature 335: 721-726. 

PATERSON, A. H., S. D. DAMON, J. D. HEW, D. W I R ,  H. D. RABINOWTCH 
et al., 1991 Mendelian factors underlying quantitative traits in 
tomato: comparison across  species, generations and environ- 
ments. Genetics 127: 181-197. 

SAKAMOTO, Y., M. ISHIGURO and G.  KITAGAWA,  1986 Akaike  Information 
Criterion  Statistics. KTK Scientific Publishers, Tokyo. 

STAM,  P.,  1991  Some aspects of  QTL mapping, in Proceedings of the 
Eighth  Meeting of the Eucarpia  Section  Biometrics in  Plant Breed- 
ing. Brno, July  1991. 

STAM, P., 1993 Constructing  integrated  genetic linkage maps 
by means of a new computer package: JoinMap. Plant J. 3: 
739-744. 

STLJBER, C. W., S. E. LINCOLN, D.  W.  WOLFF, T. HELENTJARIS and E. S. 
LANDER, 1992 Identification of genetic factors contributing to 
heterosis in a hybrid from two elite maize inbred lines  using mo- 
lecular markers. Genetics 132: 823-839. 

VAN OOIJEN, J. W., 1992  Accuracy of mapping quantitative trait loci 
in autogamous species. Theor. Appl. Genet. 84: 803-811. 

WELLER, J. I., 1986  Maximum likelihood techniques for the mapping 
and analysis  of quantitative trait loci with the aid of genetic mark- 
ers.  Biometrics 4 2  627-640. 

Communicating editor: W. G. HILL 

APPENDIX 

Updating  the estimates of the recombination frequen- 
cies  in the EM algorithm runs parallel to the  “normal” 
EM procedure  for estimation of T from F, data, as out- 
lined below. In  an F, recombinant  the F, gametes could 
be  counted directly from  the frequencies of the geno- 
types AA,  AH,  AB,  HA,  HH,  HB,  BA,  BH and BB if the 
contribution of repulsion and  coupling phase to HH 
were  known.  Given the  current estimate, r, the ratio of 
repulsion and coupling phase within the  double het- 
erozygotes equals r2: (1 - T)‘ .  Denoting  the observed 
genotypic frequencies by n ( A A ) ,   n ( A H ) ,  etc., the EM 
procedure  runs as follows: 
E step: Update  the unknown number of repulsion 

heterozygotes. 
M step: Obtain  the new estimate by counting recom- 

binant gametes. 
This leads to the following update 

n(AH) + n(HA) + n(BH) + n(HB) 
+ 2{n(AB) + n(BA) + [ r P / ( r p  + (1 - r)‘] * n(HH)} i=  

2 1 4 . 1  
When updating  the estimate of r in our QTL mapping 
method,  the above equation is used; the  numbers n(*) 
are  replaced by the  updated summed weights w ( * ) ,  
where w ( . )  and n(-) are  defined analogously. 


